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T221, T222). A 'tensor' may contain calculation instructions such as Fig. 74-Fig. 76 on 

p113 for a system of vectors that can be transformed in conjunction. 

Tijk is still imaginable as a cube or a card system with tables in succession: 'table i, 

row j, column k'. However, usual tensors require many more indices (addresses) in 

two categories: those for counter variants and covariants. The indexes for counter 

variants are then placed high, those of covariants are low (for example Tijk
lmn). Each 

index can assume determined values (for example i is 1, 2 or 3, j is 1, 2, 3 or 4 etc.). 

If you would apply this high and low indexing also to vectors and matrices, for 

example vr for a component in a row vector and vc in a column vector or Mr
c for a 

component in row r, column k of M, then the rules of matrix multiplication become 

immediately controllable. For m = 1 ... 3 and n = 1 ... 4, the multiplication Mm
n ⸳vm is 

not permissible if m≠n, because v does not have as many rows as M has columns 

(Fout! Verwijzingsbron niet gevonden.-Fout! Verwijzingsbron niet gevonden. 

p111), but Mm
n ⸳vm or Mm

n ⸳vm do. 

Raising, lowering or changing indexes such as from vm to vm or from Mm
n to Mm

n is 

simply transposing (vT and MT p110). Vectors and matrices may be considered as 

primitive tensors, but higher-order tensors are used in many shapes and sizes. These 

are complex calculation rules that allow calculations beyond 3D.a 

§ 24 PROBABILITY REDUCES DIFFERENCES TO DEVIATIONS 

BINOMIAL CHANCE DETERMINES HOW OFTEN YOU CAN EXPECT A YES OR NO 

With the throw of a coin, cross   or coin  both have the same (binomial) chance 

('probability') p = ½ (50%). 

After throwing twice (k=2) there are 4 possibilities (N=4): , ,  or  with each 

¼ (25%) chance p. 

After three times (k=3) you have made one of N=8 combinations: , , , , 

, ,  or . 

With four throws (k=4) there are N=16=24 possibilities. In short, there are N=2k 

possibilities for k throws. 

In Fig. 85 you see, throwing 4 times (or 4 coins at the same time) you rarely throw 

4 or 0 and most often 6. 

There is only 1 possibility to throw 4, 4 to throw 3, and so on. In short, the 

'frequency' f = {1, 4, 6, 4, 1}. 

Their 'probability' p is divided by the number of possibilities N, respectively p = f/N = 

{1/16, 4/16, 6/16, 4/16 and 1/16}. The biggest probability p is therefore 

f/N=6/16=38% to throw two times  and two times . 

 
a https://nl.wikipedia.org/wiki/Tensor; http://www.mate.tue.nl/~peters/4K400/VectTensColMat.pdf; http://www.ita.uni-

heidelberg.de/~dullemond/lectures/tensor/tensor.pdf;  https://www.ese.wustl.edu/~nehorai/Porat_A_Gentle_Introduction_to_Tensors_2014.pdf; 

https://web2.ph.utexas.edu/~jcfeng/notes/Tensors_Poor_Man.pdf  

https://nl.wikipedia.org/wiki/Tensor
http://www.mate.tue.nl/~peters/4K400/VectTensColMat.pdf
http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf
http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf
https://www.ese.wustl.edu/~nehorai/Porat_A_Gentle_Introduction_to_Tensors_2014.pdf
https://web2.ph.utexas.edu/~jcfeng/notes/Tensors_Poor_Man.pdf
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With more throws or coins, the writing out of all combinations N and sorting on 

frequencies f becomes laborious. 

 

k 1  f1        1 • 1       fk = N = 

  

 2  f2       1 • 2 • 1        22 4 

 3  f3      1 • 3 • 3 • 1       23 8 

 4  f4     1  4  6  4  1      24 16 

 5  f5    1  5  10 + 10  5  1     25 32 

 6  f6   1  6  15  20  15  6  1    26 64 

 7  f7  1  7  21  35  35  21  7  1   27 128 

 8 
 

f8 1  8  28  56  70  56  28  8  1  28 256 

Fig. 85 

frequencie

s 

Fig. 86 Triangle of Pascal Fig. 87 The 

frequencies …   

Fig. 88 … 

approaching a 

clock shape  

Pascal devised a triangle of numbers to predict the frequencies of each subsequent 

throw k, by adding two higher numbers each time (Fig. 86: for example 10 + 10 = 

20). The sum of each row (fk) is N = 2k. 

In row f8 (k = 8 throws) is it already N = 256 possibilities in 9 frequencies. Fig. 87 

shows all frequencies in a bar graph.      

Fig. 88 also suggests intermediate values, but the 'binomial distribution' itself is 

'discrete', not 'continuous'. 

Galton came up with a plate with rows of nails that resembles the Pascal triangle (Fig. 

89). Bullets that fall in the middle of the top nail can go in two directions. They fall in 

the next row on a nail where they also can go two ways and so on. After k = 14 rows, 

a bullet has covered one of the N = 214 = 16384 possible paths. 

It is then captured in one of the k+1=15 frequency columns (including column 0: f0, f1, 

f2 ... f14). 

There is only one path to end up in one of the two outer ones. The probability ending 

up there is 1 in 16384 (0.006%). The other opportunities are calculated with Excel in 

Fig. 90. Newton came up with the formula (Fig. 91). 

The symbol '!' it is called 'faculty': 0! and 1! are both 1, but 2!=2*1, 3!=3*2*1, 

4!=4*3*2*1, and so on.  

The probability of ending up in the middle column (f7) is thus the frequency 7 out of 

14 (= 3432) from 16384 (21%). 
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(
𝑘

𝑘𝑥
) =

𝑘!

𝑘𝑥! (𝑘 − 𝑘𝑥)!
 

 

1 over 4 2 over 4 3 over 4 

4*3*2*1 4*3*2*1 4*3*2*1 

1*  3*2*1 2*1*  2*1 3*2*1*  1 

Fig. 89 

Galton-

boarda 

Fig. 90 214 = 16384 

combinations 

divided over 15 columns 

Fig. 91 Binomium of 

Newton: kx over k 

combinations 

Fig. 92 

26 combinations 

A site with 6 lots, of which 0, 1, 2, 3, 4, 5 or 6 can be built, has in that order f = {1, 6, 

15, 20, 15, 6 or 1} (total N = 64) building possibilities (Fig. 92). There are, however, 

surprisingly many cases where a combination must be chosen from an unbeatable 

number of possibilities ('combinatorics'). 

Compiling a team from a football club with 25 members can go to '11 out of 25 '= 4 

457 400 ways ('combinatoric explosion'). That coach therefore has a considerable 

choice problem. If he left it to chance, it would amount to throwing 11 dice with 25 

sides each (possible outcomes). There is still a chance that some dice will point the 

same member, so that he has to throw them more often. 

A NORMAL DISTRIBUTION DETERMINES HOW OFTEN YOU CAN EXPECT ANYTHING IN 

BETWEEN 

If the number of possible outcomes N is not exactly a power of 2, or with a dice of 6, 

but of an infinite number, such as the lengths of 17mln people, then you need a 

continuous probability distribution for all real numbers. Such a distribution has an 

infinite number of possible outcomes N for every k observations x and their chances 

p. 

Such a 'normal distribution' must condense around an average  but dilute infinitely to 

the rare cases. 

Gauss came up with a formulab that 'continuously' fills the gaps between whole 

numbers (red in Fig. 88, Fig. 90 and Fig. 94). Newton's 'discrete' numbers at k = 8 

(Fig. 88) differ little from that normal distribution, good for k = . 

The average of all deviations x- determines how 'flat' Gauss (Fig. 94) is. If the - and 

+ deviations on both sides of μ disappear symmetrically, their sum is zero, so you can 

not calculate that average (0 / k). 

 
a https://yourstory.com/2016/08/02373fb268-power-of-thoughts-truth-or-bullshit/  

b That formula gives the chance of outcome x. In Excel: NORMDIST(x;μ;σ;FALSE). The 'cumulative' probability of a result between two 

chances is the area, the 'integral' of this formula. It is so complicated that textbooks do provide a table with different exceedance probabilities for 

values of x, but Excel calculates them all with 1-NORMDIST(x;μ;σ;TRUE). 

https://yourstory.com/2016/08/02373fb268-power-of-thoughts-truth-or-bullshit/
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Fig. 93 Calculation of   from the 

frequencies of Fig. 90 and… 

Fig. 94, …its normal Gauss-distribution 

with =0 and = 

Squaring makes everything positive. The square sum of all deviations (x-)2 is 

therefore a positive measure for the total of all deviations of . That is on average (x-

)2/N ('variance'). If you measure the different lengths of people in cm, then you get 

that variance in cm2. That is a surface, and the deviation is not a surface, but a length 

measure. 

The root ((x-)2/n) is then again in cm. That root of the variance is the 'standard 

deviation' . 

The standard deviation σ has some special characteristics. Its deviation is the 

inflection point where densification around  must pass into dilution to infinity (the 

graph becomes from convex into hollow). 

Within the area bounded by both - and + on both sides, you will find 68.2% of the 

results. 

At 1,96 this is already 95%. The rest is then called 5% 'exceedance chance'. 

For Gauss (note ddddddd p118) you only need to know  and  in order to predict the 

probability of occurrence of each outcome. 

If you do not know all the outcomes x, but their frequencies f in the neighbourhood of 

each k (their 'class'), take k instead of x (Fig. 93) and put another f in the formula: 

=(f(k-)2/n). 

If you do know all N results x, then k is x and f=1, so that you can leave out that f 

again. 
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SAMPLES ALLOW CONCLUSIONS ABOUT THE WHOLE BY PROBABILITY TESTS 

With the results of a sample of n from a much larger mass N you can already estimate 

 and  quite nicely. 

You then write m, s, z instead of ,  x. Gauss (m, s) predicts all outcomes within set 

'confidence limits'. 

By comparing your outcomes with that prediction, you can find deviations that require 

further explanation. 

  

Fig. 95 Two series of outcomes A and B, 

their chances  

Fig. 96 Comparative values and tests 

in Excel  

You can now also compare two different series of outcomes A and B. 

For example, Fig. 95 shows two data sets. Fig. 96 shows the differences and 'tests' 

some relations between A and B. 

For example, the '2-test' ('chi-square test') shows that A and B still have a 5.5% 

chance of actually being one normal distribution ('not independent'). The r-test shows 

a considerable correlation. The t-test shows at least 100% chance of an equal average, 

but the F-test proves a considerable difference in variance and therefore in standard 

deviation. 

Of course we already knew that from Fig. 96, but you can use these tests if you do not 

have all the data yet. 

SOME CASES FROM COUNTLESS CASES STILL HAVE A CHANCE 

A year counts 365*24*60*60 = 31 536 000 seconds. If you stay awake you will see 

about 16 frames per second. 

These are therefore N = 504 576 000 observations. If you see a lightning (1 to 0.0001 

sec) on average 4 times a year in 1/16 of a second, then you would calculate a 

negligible average probability of 4 out of more than 500 million, practically zero. The 

complementary chance of no lightning strike is almost 100% 

This is a binomial case (cross or coin) of whether or not a lightning occurs, but the 

deviations, variance or standard deviation, are unpredictable. How can you now know 

how much chance you run in an entire year, to experience no or 10 lightning strikes? 

Such a probability problem with innumerable observations N in time occurs in 

insurances, waiting times and the like. 



§ 24 PROBABILITY REDUCES DIFFERENCES TO DEVIATIONS 

 

121 

Poisson came up with a formulaa for a given  (eg 4) with a standard deviation = 

(eg 2) for each period (eg a year). 

You only need to know , but with Poisson that is called . That formula gives the 

chance of k occurrences (Fig. 97). 

If  is far enough from 0, then the distribution seems to be quite similar to that of 

Gauss. 

However, if the average  is close to 0 (eg 4, Fig. 98), the Poisson distribution 

becomes skewed. 

With an average of 4 lightning strikes per year (20% chance) you have 10% chance 

that it will be 4 + 2 = 6, but on the other hand 15% chance of 4-2 = 2. That division 

"collides with the zero limit". 

A lightning strike can indeed occur 0 times, but not -1 times. 

    

Fig. 97 Poisson at 

=35,5 

Fig. 98 Poisson at 

=4 

Fig. 99 Weibullb Fig. 100 An income 

distributionc 

NON-NORMAL DISTRIBUTIONS SUPPOSE DEVIATING DEVIATIONS 

There are other skewed probability distributions that start at 0, such as the continuous 

'Weibull distribution'. 

For example, it is used for wind speeds (Fig. 99). The wind also can not blow less 

than with a speed 0. 

The distribution of incomes is also distorted, but by a bureau for statistics data on 

incomes (the red dots in Fig. 100) are often given per 'class' (from .. to). At the higher 

incomes, the frequency classes in Fig. 100 are horizontal red lines. 

The lower incomes are given in smaller classes. As a result, around 15 thousand you 

can see a dent that would disappear from one large class of 0 to 40,000. The class-

middle would then reasonably be on an 'exponential' downward trend. 

Exponential functions are usually written as powers of the number e (= 2.718 ...), 

because they integrate easily (adding 'cumulative' opportunities as a surface). In Excel 

you write ex as 'EXP (x)'. If you click on an exponential 'trend line' in Excel for the 

data of Fig. 100, it draws the continuously falling curve 113.79 * e-0.019x.d 

 

a The formula  is calculated in Excel with POISSON(k;λ;FALSE). With TRUE the cumulative version is calculated. 

b  𝑃(𝑣, 𝐶, 𝑎): 𝑎 ∗ 𝐶 ∗ 𝑣𝐶−1 ∗ 𝑒{(−𝑎∗𝑣)
𝐶} 

c p1(x,a,f)= a+bx+cx2+dx3+ex4+fx5 and p2(x,a,b,c)= a(x-c)eb(x-c) 

d This formula is printed with the 'correlation' curve (eg R2 = 81%) if you have checked these options. 
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This 'regression line' therefore deviates considerably from the more detailed data with 

this moderate correlation. 

In the formula a*e
b*x, a and b (the 'parameters') in Fig. 100 get the values a = 113.79 

and b = -0.019. 

You should set these parameters differently each year if the data changes. That 

formula does not predict anything yet, but it is useful to be able to estimate 

intermediate values ('interpolate'). If, after a number of years, you find a trend in the 

course of the parameters yourself, you can perhaps risk a prediction ('extrapolate'). 

With a formula a*(x-c)*e
b*(x-c) you approach the data after x=40 much better, but 

before x=40 it is totally wrong (in Fig. 100 that part is omitted). There (x40) a 

'polynomial' function fits much better (p(x) = 2,3x0-81x + 67x2 + 0,37x3-0,021x4-0,0004x5), but that on its 

turn does not work after x=40. The two functions that are connected at x=40 together 

describe the data very nice, but if you do not find trends in all those parameters, then 

you still do not have a prediction.a 

REGRESSION REDUCES DEVIATIONS 

In Fig. 100 is a trend line in a point cloud drawn as a global relationship between 

income and the chance of it. 

The method of finding a mathematical relation between two real variables between 

single data is called 'regression'. 

Suppose a shopkeeper notes the average price of his products and his turnover for a 

few months to find out whether a price reduction is worthwhile (Fig. 101) b. The 

simplest is, of course, if that relationship shows a straight line y=ax+b. 

 

Fig. 101 Pricing, advertising and sales of a shopkeeper  

Excel now gives a trend formula that promises that turnover doubles if he halves the 

price. That is of course not true, because if you see the price line in Fig. 101 goes to 

zero (extrapolate to the top left) he would get a huge turnover according to that 

formula if he gives away everything for free. That straight ('linear') line is only 

reasonable (R2 = 79%) for those 8 observations, so that you can interpolate there, but 

extrapolating can lead to absurdities. 

 
a Mathematicians do not like this kind of mess. 

b The figures from this list come from Buijs(2003)Statistiek om mee te werken(Groningen)Stenfert Kroese p384 
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An advertising expert, to whom the retailer has spent a lot of money each month 

(column 'advertising' in Fig. 101), makes Excel claiming that sales will increase from 

20 to 25 if you double advertising spending from 10 to 20. 

The shopkeeper feels that something is not right. Who guarantees that the increase in 

turnover is not caused by a simultaneous price reduction? The 'pairwise' relationship 

between price and advertising per month is missing. 

There are now three variables in the game. Statisticians then switch to 'multivariate 

analysis', and there are all sorts of mathematical methods for this.a I limit myself to 

'multiple regression analysis'. Excel has an add-in for data analysis that provides a 

formula for this case: turnover = - 4.33*price+0.17*advertising+33.63. This shows that 

a price reduction for the turnover of this retailer has weighed much heavier (-4.33) 

than advertising costs (0.17). 

Perhaps there are other variables (purchasing costs, competition, seasonal influences, 

fashion) that pull turnover up or down. Moreover, the question remains whether those 

regression lines are straightforward. Perhaps you can approach some better parabolic, 

exponential or with a polynomial. In any case, a wrong choice of two variables 

(turnover and advertising) or the omission of other (pricing) for the reality can lead to 

incorrect conclusions. 

More coherent variables are difficult to understand, but we have to deal with them on 

a daily basis. 

They can not be represented in one graph, but often people in a situation in which they 

have to take into account many things at the same time can still make the right 

decision. 

How do our brains deal with so many variables from different senses and memories? 

The increasing understanding of our neural system led computer experts to simulate 

the functioning of nerve cells (neurons) in a network (see § 26 p138). This has 

produced remarkably useful results in this century after a period of trial and error. It is 

an iterative process in which the weighting of different signals is constantly being 

adjusted ('learning'). 

§ 25 REPETITION CAN PRODUCE FRACTAL DIVERSITY 

ITERATION HAPPENS EVERYWHERE 

If you change a number with a formula and then change the result with the same 

formula, then such a 'feed-back' of the previous result is called an 'iteration'. The 

simplest example is counting. For counting, the formula y = x + 1. Here x is the 

previous number and y is the result that in the next operation (iteration) will serve as x 

again to get the next y. 

 
a Slotboom(2001)Statistiek in woorden(Groningen)Wolters Noordhoff calls at 'multivariate analysis' the following methods: multiple regression 

analysis, principal component analysis, factor analysis, canonical correlation analysis, path analysis, variant analysis, multivariate analysis of 

variance MANOVA, nonlinear multivariate analysis, covariance analysis, discriminant analysis, linear combinations, interaction effects, GLM 

General Linear Model , cluster analysis and multidimensional scale techniques. 


